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Small-scale structure of two-dimensional 
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The formation of singularities in two-dimensional magnetohydrodynamic flow is 
investigated by direct numerical simulation. It is shown that two-dimensional 
magnetohydrodynamic turbulence is not as singular as three-dimensional hydro- 
dynamic turbulence (in the sense that it has a less highly excited small-scale structure) 
but that it is more singular than two-dimensional hydrodynamic turbulence. 

1. Introduction 
Two-dimensional magnetohydrodynamic (MHD) turbulence has been the subject 

of much recent research interest (Fyfe & Montgomery 1976; Fyfe, Joyce & Montgomery 
1977; Pouquet 1978; Weiss 1966). In  this paper, we compare the results of numerical 
simulations of two- and three-dimensional hydrodynamic and magnetohydrodynamic 
flows at high Reynolds numbers. 

Pouquet ( 1978) suggests that two-dimensional MHD turbulence is dynamically very 
similar to three-dimensional hydrodynamic turbulence. She uses an analytical theory 
of turbulence (the eddy-damped quasi-normal (EDQN) approximation) to infer that 
small scales are typically excited at a much higher level in two-dimensional MHD 
turbulence than in two-dimensional hydrodynamic turbulence. I n  contrast to the 
inviscid two-dimensional Navier-Stokes (Euler) equations, which are known to have 
smooth solutions for all time (Wolibner 1933; Frisch & Bardos 1976, unpublished), the 
EDQN approximation suggests that the inviscid two-dimensional MHD equations 
develop singularities in a finite time, even with periodic boundary conditions and 
smooth initial conditions. These flow singularities suggest that the small-scale structure 
of two-dimensional MHD flow is more intermittent than the small-scale structure of 
two-dimensional hydrodynamic flow. 

I n  this paper, we provide some numerical support for some of Pouquet’s con- 
jectures. While we conclude that two-dimensional MHD flow is significantly less 
singular than three-dimensional hydrodynamic flow, we also conclude that it is much 
more singular than two-dimensional hydrodynamic flow. Roughly speaking, two- 
dimensional magnetohydrodynamic flow behaves like hydrodynamic turbulence in a 
dimension intermediate between two and three. 
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2. Dynamical equations and numerical methods 
The two-dimensional equations of motion for an incompressible conducting fluid in 

the MHD approximation can be written in terms of the velocity v, magnetic field h, 
vorticity @, = V x v, currentjf, = V x h and magnetic vector potential A = Af,, where 
h = V x A. All variables are functions of x, y and t ,  and fs is a unit vector in the z 
direction. The equations of motion are 

aylat = - v . vy + h . vj + vvy, 
aA/at = - V .  VA +pV2A, (2) 

V . h  = 0, V . V  = 0, (3) 

where v is the kinematic viscosity and p is the magnetic diffusivity. I n  this paper, 
(1)-(3) are solved with periodic boundary conditions in a box with sides 2n. Thus all 
fields may be represented as discrete Fourier series with integral wave-vector 
components. 

Equations (1)-(3) with v = p = 0 possess three quadratic constants of motion: the 
total energy 

the mean-square magnetic vector potential 

and the cross-helicity 

Here we use the notation 

E = +$IVI2+ (hI2ldx,  

J A 2 d x  

J(v. h ) d x .  

j d x  = ( 2 ~ ) - 2 ~ 0 2 ' d x ~ 0 2 '  dy. 

When v > 0 or p > 0, the rate of total energy dissipation is given by 

~ ( t )  = -dE/dt  = v / y 2 d x + y / j Z d x .  ( 4 )  

We use definitions of length scales and Reynolds numbers which follow thoee used 
in studies of two-dimensional hydrodynamic turbulence (see Herring et al. 1974). The 
kinetic Reynolds number Rv is defined by 

Rv = Ez1[2Ck4E~(k)]-* v-5 (5) 

R" = E m [ 2 C k 4 E m ( k ) ] - ) ~ - ~ .  (6) 

and the magnetic Reynolds number Rm is defined by 

Here Ew(k) and Em(k) are the kinetic and magnetic energies, respectively, a t  wave- 
number k and Ev = XEv(k) and Em = CEm(k). 

We solved (1)-(3) numerically using the pseudospectral method with a truncated 
Fourier series expansion of the flow variables (see Gottlieb & Orszag 1977, chap. 2 ) .  
The computer code was a modification of the KILOBOX code used for high resolution 
two-dimensional turbulence calculations (Orszag 1976); in this code, up to 1024 x 1024 
modes can be used to represent each dynamica.1 variable a t  each instant of time. The 
MHD version of KILOBOX is so designed that only 9 Fourier transforms are required 
for each time step (Tang 1977). With 256 x 256 modes, the running time for the present 
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MHD calculation is about 6 s  per time step on a CDC7600. Most of the calculations 
reported below involve several hundred time steps. The accuracy of our numerical 
results has been carefully checked as discussed by Herring et al (1974). For example, 
the accuracy of the energy dissipation results plotted in figures 1 and 2 is better than 
1 yo (Tang 1977). 

3. Results 
I n  this section, we report results for the evolution of two-dimensional MHD turbu- 

lence with both non-random and random initial conditions. A simple non-random 
initial condition imposed at t = 0 is 

v = (-siny, sinz), A = cosy++cos2x. (7) 

As t increases, this simple flow becomes increasingly complicated owing to the nonlinear 
interactions in (1)-(3). An analytical solution of (1)-(3) with these initial conditions 
does not seem possible. With v = p = 0.01, the numerical simulation is accurate a t  all 
dynamically important scales with 128 x 128 Fourier modes; when v = p = 0-005, 
256 x 256 modes are required. When v = p b 0.02, accurate results are obtained with 
64 x 64 Fourier modes. For reference, we note that the initial values of the Reynolds 
numbers Rv and Rm are 232 and 114, respectively, when v = p = 0.02. Both R' and Rm 
increase by a factor of 23 + 2.52 when v = p is halved. Results are presented below for 
magnetic Prandtl numbers v/p equal to Q, 1, and 2. 

In  figure 1, we plot the total energy dissipation e ( t )  vs. t for v = p = 0.08, 0.04,0.02, 
0.01 and 0.005. When v = p is halved with the fixed initial condition ( 7 ) ,  the peak of the 
energy dissipation rate is decreased by about 20 yo. 

In  figure 2, we plot the evolution of e ( t )  vs. t when the initial flow is chosen as a 
realization of a Gaussian ensemble with energy spectrum. 

E m ( k )  = Et'(k) = $ke-*k. (8) 

As shown in figure 2, when v = p = 0.01 the peak of the energy dissipation is about 
26 yo smaller than when v = p = 0.02. 

The behaviour exhibited by two-dimensional MHD flow in figures 1 and 2 is quite 
different from the behaviour of two-dimensional hydrodynamic flow. In two-dimen- 
sional hydrodynamics, nonlinear interaction conserves mean-square vorticity (en- 
strophy), so that the dissipation rate in unforced dissipative turbulence satisfies 
s( t )  < e(0)  for t 2 0. I n  contrast, e ( t ) / E ( O )  can achieve values much larger than one in 
MHD flow. 

Comparison of the results plotted in figures 1 and 2 with similar results for three- 
dimensional hydrodynamics is also instructive. In  figure 3 we plot the kinetic energy 
dissipation s( t )  us. t for the Taylor-Green vortex (Orszag 1977). The initial flow for this 
vortex motion is 

v = (cos z sin y cos z, - sin x cos y cos z, 0). 

As shown in figure 3, when v decreases by a factor of 4 (i.e. Reynolds number increases 
by a factor of 4) the peak in e(t) changes by about 10 yo. The results plotted in figure 3 
support the hypotheses (Orszag 1977) that (i) the inviscid three-dimensional Navier- 
Stokes equations can develop singularities in a finite time and (ii) the rate of kinetic 

5-2 
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FIGURE 1. A plot of the energy dissipation rate s( t )  of the two-dimensional MHD flow with initial 
condition ( 7 ) .  (a) Y = p = 0.08 (R" = 36), ( b )  Y = p = 0.04 (R" = 92), (c) Y = p = 0.02 (R" = 232), 
( d )  v = p = 0.01 (R" = 585), (e)  v = p = 0.005 (R" = 1474). 

2 I I r 
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FIGURE 2. A plot of the energy dissipation rate s( t )  for two-dimensional MHD turbulence. 
The initial flow is chosen as a realization of the Gaussian ensemble with energy spectrum (8). 
(a) v = p = 0.02 (R" = 167), (b)  v = p = 0.01 (R" = 420). 
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FIGURE 3. A plot of the energy dissipation rate s( t )  for the three-dimensional non-magnetic Taylor- 
Green vortex with Reynolds numbers R = 100, 200, 300 and 400. The initial flow field is 
v = (cos x sin y cos z, -sin x cosy cos z,  0) and the Reynolds number R = l/v. 

energy dissipation is asymptotically independent of the Reynolds number as the 
Reynolds number approaches infinity. 

The results plotted in figures 1-3 suggest that two-dimensional MHD flow does not 
have as strong a tendency to develop singularities as three-dimensional hydrodynamic 
flow. The results plotted in figures 1 and 2 do not support Pouquet's hypothesis that 
~ ( t )  has a finite non-zero limit as v = p 4 0. 

While it does not seem that e ( t )  has a finite non-zero limit as v = p 4 0, the fact that 
e(t)/e(O) achieves values much greater than 1 as v = p -+ 0 (see figures 1 and 2) shows 
that vorticity is produced in two-dimensional MHD turbulence (see figure 4). When 
v = ,u = 0-04, the maximum enhancement of the kinetic enstrophy 

Xk2E"(k, t)/Xk2E"(k, 0) 

is about 2; when v = p = 0-02, the maximum is about 34; when v = ,u = 0.005, the 
maximum is about 10. When v = p 6 0.02, the kinetic enstrophy reaches its maximum 
for t N 1.5 roughly independent of the value of v = p. In  two-dimensional hydro- 
dynamic unforced flow ~ ( t )  < E ( O ) ,  but the magnetic field removes this constraint. 
Furthermore, as v = p + 0 the value of maxs(t)/s(O) increases, showing that ever 
smaller wales of motion are produced as the Reynolds number increases. 

The results that e(t)/e(O) achieves values much larger than 1 and that the location of 
the peak of e ( t )  is insensitive to v = p suggest that a flow singularity with infinite 
vorticity may occur in a finite time when v = ,u = 0, as conjectured by Pouquet. 

The conclusions stated above do not appear to be sensitive to the magnetic Prandtl 
number. In  figure 4, we plot the evolution of the kinetic and magnetic enstrophies 
X:k2E2'(k) and Xk2Em(k),  respectively, with the initial condition (7) for several values of 
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FIGURE 4. A plot of the kinetic and magnetic enstrophies Ck2Ev(k, t) and Xk2Em(k, t ) ,  respectively, 
for the two-dimensional MHD flow with initial condition (7). (a) Magnetic and (e) kinetic enstrophy 
with v = p = 0.02. (b) Magnetic and (9) kinetic enstrophy with v = 0.04, p = 0.02. (c)  Magnetic and 
(f) kinetic enstrophy with v = 0.02, p = 0.04. (d) Magnetic and (h) kinetic enstrophy with v = 0.04, 
p = 0.04. 

0 0.5 1 .o 1.5 2.0 
t 

FIQURE 5 .  A plot of the kinetic, magnetic and total energies EV, Em and ET, respectively, as 
functions o f t  for the two-dimensional MHD flow with initial condition (7) and v = p = 0.02. 

v and p, Evidently production of magnetic enstrophy in this flow is governed strongly 
by the value of the magnetic diffusivity p but only weakly by the viscosity v. 

In  figure 5, we plot the kinetic, magnetic and total energies vs. t for v = p = 0.02. 
There is significant energy transfer between the kinetic and magnetic components. In 
the inviscid limit, this transfer must conserve both total energy and mean-square vector 
potential. Since Em = Ck2 IA(L)I2, transfer of magnetic vector potential out of its 
initial excitation band must enhance magnetic energy at the expense of kinetic energy, 
a t  least until dissipation becomes significant. 
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FIGURE 6. A plot of the evolution of magnetic energy Em(t)/Em(0) in a two-dimensional MHD 
flow with a seed magnetic field. The initial flow is given by (7)  modified by scaling the magnetic 
vector potential A such that Em(0)/Eu(O) = lo-’. (a) V = p = 0.01, (b)  v = p = 0.02, (c)  Y = p ~ 0 . 0 4 .  

In  figure 6, we examine the growth of a seed magnetic field. The initial flow is pro- 
portional to (7) with the amplitude of A decreased such that the initial value of Em/Ev 
is 10-4. As v = p decreases, the maximum amplitude of Em increases in a manner that 
is not inconsistent with growth to a finite level in the high Reynolds number limit. 

In figures 7 and 8 we plot contours of the current j and vorticity 5 at t = 1 for the run 
with initial condition (7) and v = ,u = 0.005. In figures 9-11 we plot the streamlines of 
the velocity field, the contours of the magnitude I hl of the magnetic field and the 
magnetic lines of force, respectively, for the same run a t  t = 1.  

The effects of the magnetic field are best exhibited by comparison of the vorticity 
contours plotted in figure 8 with similar vorticity contours obtained by integration of 
a two-dimensional non-magnetic flow. If the non-magnetic flow has the initial velocity 
field (7) with A = 0, then the solution of (1)-(3) is simply 

v = ( -  sinye-”t, sinxe-%t), 

so the flow just decays with no nonlinear effects. On the other hand, if we choose the 
initial non-magnetic velocity field to be 

v = (-siny, sin2x) (9) 

then nonlinear effects are possible. In  figure 12 we plot contours of vorticity 6 at t = 1 
for the two-dimensional non-magnetic flow with u = 0.005 and initial condition (9). 
It is apparent that the vorticity of the MHD flow plotted in figure 8 is significantly more 
intermittent than that of the non-magnetic flow plotted in figure 12. This intermittency 
of the MHD flow is especially apparent in the contour plot of the current j (see figure 7), 
in which the distinctive S-shaped local structure appears in the centre of the plot. 
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FIUURE 7. Contour plot of current j(x, y) a t  t = 1 for the two-dimensional 
MHD flow with initial condition (7) and v = ,u = 0.005. 
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FIGURE 8. Contour plot of vorticity c(z, y) at t = 1 for the two-dimensional 
MHD flow with initial condition (7)  and Y = p = 0.005. 
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FIGURE 9. Streamlines of the velocity field at t = 1 for the two-dimensional 
MHD flow with initial condition (7) and Y = p = 0.005. 
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FIGURE 10. Contours of magnetic field intensity Ih(z, y) I at 1 = 1 for the two-dimensional 
MHD flow with initial condition (7)  and v = p = 0.005. 
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FIGURE 11.  Magnetic lines of force [contours of A ( x ,  y)] at t = 1 for the two-dimensional 
MHD flow wit,h initial condition ( 7 )  and v = p = 0.005. 
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FIGURE 12. Contour plot of vorticity [(z, y) at t = 1 for the two-dimensional non-magnetic 
flow with initial condition (9) a n d  v = O*OOB. 
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4. Discussion 
While all unforced solutions of (1)-(3) with v, p > 0 must eventually decay to zero 

because dE 
at A 2 d x < 0 ,  - c O 

unless 5 = h = 0, the intermediate flow states before decay can be quite complicated. 
Two-dimensional non-magnetic turbulence is effectively constrained by the absence 
of vortex stretching so no appreciable energy dissipation can occur. From the mathe- 
matical point of view, the bounds on vorticity in two-dimensional non-magnetic flow 
maintain the regularity of the flow for all time. On the other hand, a magnetic field can 
circumvent the vorticity constraint so vorticity can be produced. While two-dimen- 
sional MHD flows decay more rapidly than their non-magnetic counterparts when 
v, p > 0, they also exhibit enhanced intermittent flow structures. As v = p --t 0, our 
numerical results suggest that flow structures of arbitrarily small size are produced in 
a finite time, suggesting that the inviscid equations produce singularities in a finite 
time. This inference should be further tested by more comparisons with high resolution 
numerical solutions of (1)-(3). 

A simple physical explanation for the production of small-scale motions by MHD 
flows is in order. When v = p is small, an initial weak magnetic field is stretched and 
convected by the velocity field and thus wrapped into tight ‘ropes’ that follow closely 
the large-scale fluid flow. When neighbouring lines of force are thus stretched into close 
proximity to each other, magnetic diffusion can break the lines of force and locally 
reconnect them. When the lines of force snap, their tension force reacts back on the flow 
field to produce small eddies on top of the larger convecting ones, giving an enhanced 
cascade process. This argument does not give convincing proof that a singularity forms 
in a finite time for the inviscid MHD system because it relies on diffusion to produce 
small-scale motions. Evidently the d ynamical process is somewhat more complicated 
with the mechanism just discussed responsible for only part of the observed effects. 

The same kind of mechanism seems to give an enhanced cascade process, and with i t  
enhanced small-scale structure and flow singularities, whenever the quadratic con- 
stant of motion 1c2dx of inviscid two-dimensional hydrodynamic flow is destroyed by 
non-dissipative forces. For example, stable stratification in a Boussinesq fluid voids the 
vorticity constraint, so that, if the initial turbulent motion is strong enough, an 
enhanced cascade can take place (as will be discussed thoroughly in a later paper). 
Dynamical forces like those provided by magnetic fields and stable stratification have 
stabilizing effects on small amplitude motions but may have destabilizing effects that 
enhance the production of small-scale motions when applied to initially large amplitude 
turbulent flows. 
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